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Studies on the Provisions of Confining-Reinforcement for High-Strength 

Concrete Column 

 
Antonius 
Department of Civil Engineering, Universitas Islam Sultan Agung, Semarang, Indonesia 

  

Abstract: It is general knowledge that the design of earthquake-resistant structures for high-strength concrete columns requires 

confining-reinforcement with a relatively high volumetric ratio to ensure the ductility of the structure. This implies that the 

mechanical behavior of high-strength concrete differs significantly from the behavior of normal-strength concrete. However, 

the provisions on the minimum volumetric ratio of confining-reinforcement contained in the Indonesian Concrete Code (SNI 

2847-2013) is essentially derived from the test results for normal-strength concrete. This paper studies the confining-

reinforcement provisions used in several standards, i.e., SNI 2847-2013, ACI-2011, NZS-2006 and CSA-2004, to determine 

the ductility of the concrete columns. The case study is based on the analysis of the cross-section of high-strength concrete 

columns, the parameters that affect the strength, and by evaluating the value of the column’s cross-section curvature ductility. 

The study results showed that the equation for confining-reinforcement adopted in the SNI 2847-2013 is very conservative 

compared to other codes when applied to low axial load levels (≤0.2), but is relatively less conservative if the axial load level 

is greater than 0.3.  

Keywords: high-strength concrete, column, confinement, reinforcement, ductility 

 

1 INTRODUCTION 

1.1 Background 

Numerous comprehensive studies concerning the 

behavior of materials and structural components 

made of high-strength concrete have been conducted 

[Li & Park 2004, Paultre & Legeron 2008, Antonius 

& Imran 2012]. The resulting design equations have 

also been proposed and partially implemented in 

planning standards in each corresponding country. 

High-strength concrete has a brittle behavior; 

therefore, the structural ductility behavior becomes a 

major issue in the design of high-strength concrete 

structures, especially ductility in structural columns 

located in high earthquake zones.  

 

The assemblage of lateral reinforcement as 

confining-reinforcement is intended to improve the 

ductility of concrete columns, underlining the 

importance of the role of reinforcement [Paultre & 

Legeron 2008, Subramanian 2011]. The confining-

reinforcement design equations contained in the 

applicable Indonesian Concrete Code today is the 

SNI 2847-2013. The equations for square cross-

sections are:  
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Equation (1) is used to design the structure under 

static loading, and equation (2) is to design structures 

under seismic loads. The design equations show a 

direct relationship between the volumetric ratio of 

confining-reinforcement and the concrete 

compressive strength. The use of high-strength 

concrete structures will have implications on the 

required increase in the confining-reinforcement 

volumetric ratio. To achieve the appropriate 

confining-reinforcement volumetric ratio for circular 

cross-section columns as mandated by the above 

design equation, a technique of spacing reduction can 

be applied. Meanwhile, in the case of a square cross-

section column, besides a spacing reduction, one can 

also conduct a variation in confining-reinforcement 

configuration. To maintain sufficient confining-

reinforcement spacing for concrete casting purposes, 

medium-strength to high-strength confining steel can 

be used [Bayrak and Sheikh 2004, Li & Park 2004, 

Antonius 2014]. The experimental test results also 

show that the ductility of high-strength concrete 

columns can be maintained properly if high-strength 

steel is used.  

 

The research development of high-strength concrete 

columns has not been implemented into the design 

equations of the SNI 2847-2013, since the standards 

are derived from the research results on normal-
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strength concretes. The behavior of high-strength 

concrete therefore needs to be studied in greater 

depth, in particular the provision of confining-

reinforcement applied to high-strength concrete 

columns as adopted in the SNI.  

 
1.2 Objective 

 

This paper discusses the design equations adopted in 

the SNI 2847-2013 and assesses these with the 

confining-reinforcement design provisions as 

mandated in the ACI 318-11, NZS 3101-2006 and 

CSA 2004 standards. The objective of this study is to 

evaluate the feasibility of confining equations based 

on the SNI in the design of high-strength concrete 

columns. The discussion is focused on the behavior 

of the resulting ductility because it is very closely 

related to structures located in the earthquake zone. 

This case study is limited to columns with square 

cross-sections, since for this type of column the 

configuration in confining-reinforcement can be 

varied. Further, the design equations are limited for 

columns under static loadings only. 

 

 
2 CODE PROVISIONS FOR CONFINING-

REINFORCEMENT OF SQUARE SECTION 

 

The confining-reinforcement design equation used by 

the SNI 2847-2013 and ACI 318-11 (2011) for 

square cross-sections is as seen in equation (1). The 

difference lies in the upper limits of the yield stress. 

In the SNI, a limit yield stress up to 700 MPa was set, 

as upper bound, while for the ACI a value up to 

10,000 psi yield stress (~ 688 MPa) is allowed. The 

design equation in the SNI and the ACI were derived 

with the philosophy that the cross section of the 

concrete core can maintain its strength after the 

concrete cover spalls. The equation does not directly 

express the degree of ductility of the structure.    

  

Meanwhile the minimum confining-reinforcement 

volumetric ratio based on the NZS 3101 2006 is as 

follows: 
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To prevent buckling of longitudinal reinforcement, 

the volumetric ratio also must satisfy the following 

equation:  
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The above NZS equation accommodates the 

influence of axial load levels on a structure to the 

volumetric confining-reinforcement ratio. This 

statement is also explained by Kristianto & Imran 

(2013). A provision in the NZS noted that the 

reinforcement used for confinement purposes is 

permitted to reach a yield stress of 800 MPa. 

According to Li & Park (2004), the equation above is 

the result of research conducted by Watson et al. 

(1992), and it was noted that these equations are not 

directly applicable to the design of high-strength 

concrete columns with normal- to high-strength steel.  

 

The confining-reinforcement design equation based 

on the CSA-2004 for a square cross-section column 

is as follows: 
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Where kp is the level of axial load, and kn is the effect 

of the amount of longitudinal reinforcement of the 

section, with:  

 2/   nnkn      (7) 

The CSA limits the yield stress of confining-

reinforcement (fy) to 500 MPa. The CSA equation 

actually accommodates the influence of the axial load 

and the amount of longitudinal reinforcement. 

 

The design equation in the two standards is based on 

the required confining-reinforcement that increases 

significantly when the structural column is designed 

for strong earthquakes, since this will escalate the 

axial load acting on the column. It can be concluded 

that the necessary confining-reinforcement is highly 

dependent on the size of the acting axial load.  

 
3 COMPARATIVE STUDY 

This comparative study was carried out for all the 

design provisions as outlined in the previous 

chapters, and was performed on two types of 

confining-reinforcement configurations of columns A 

and B as shown in Figure 1. Material properties are 

as follows:  

- Two cases of concrete compressive strength (f'c), 

70 and 90 MPa  

- cross-sectional dimensions are 500x500 mm  

- concrete cover is 40 mm  
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- longitudinal reinforcement diameter is 22 mm with 

a yield stress (fyl) of 480 MPa  

- the confining-reinforcement has a diameter of 12 

mm, with a yield stress (fy) ranging from 400 MPa, 

600 MPa to 800 MPa 

 

 

 

 

 

 

 

 

 
Figure 1. Sectional column 

 

Figures 2 and 3 show the design provision 

comparison as a function of the minimum volumetric 

ratio to the axial load levels, for columns A and B. 

The steel has a yield stress of 400 MPa.  

 

The figures show that for concrete with a 

compression strength of 70 and 90 MPa and for axial 

loading levels up to 0.2, the provision of the NZS and 

CSA are significantly lower than the SNI and ACI. 

At axial loading levels of 0.3, only the CSA provision 

was lower, when compared to the SNI and ACI. For 

an axial load level of 0.4, the confining-

reinforcement provisions as mandated by the NZS 

and CSA are higher than the requirement in the SNI 

and ACI.  

  

Additional results are shown in Figures 4 and 5. Here 

the yield stress of the confining-reinforcement is 

increased to 600 MPa. Similarly to the previous 

findings, for an axial load level of 0.2 the provisions 

for the minimum confining-reinforcement based on 

the NZS and CSA are also lower than the provisions 

mandated by the SNI and ACI. At an axial load level 

equal to 0.3 the same result as was observed for the 

confining-reinforcement with a yield stress of 400 

MPa, i.e., the CSA provisions are below that of the 

SNI and ACI. However, the result of the NZS 

provision is higher than those of the SNI and ACI. 

But for axial load levels of 0.4, the SNI and ACI 

predicted are lower outcome than the other two 

standards, the NZS and CSA.  

 

The utilization of high-strength confining-

reinforcement steel (fy=800 MPa) also has 

consequences for the minimum confining-

reinforcement that should be assembled. Figures 6 

and 7 show that based on the SNI and CSA standards 

for an axial load of 0.3 the confining-reinforcement 

volumetric ratio decreases, when compared to the 

lower yield strengths. However, the values approach 

the provisions of the NZS and CSA closely. At axial 

load levels of 0.4 the provisions of the NZS are the 

most conservative when compared to the SNI and 

ACI. 
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Figure 2. Comparison of minimum confining-

reinforcement provisions; A configuration, fy = 400 MPa  
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Figure 3. Comparison of minimum confining-

reinforcement provisions; B configuration, fy = 400 MPa  
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Figure 4. Comparison of minimum confining-

reinforcement provisions; A configuration, fy = 600 MPa  
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Figure 5. Comparison of minimum confining-

reinforcement provisions; B configuration, fy = 600 MPa  
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Figure 6. Comparison of minimum confining-

reinforcement provisions; A configuration, fy = 800 MPa  
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Figure 7. Comparison of minimum confining-

reinforcement provisions; B configuration, fy = 800 MPa  

 

The result of the comparison indicates that for 

minimum confining-reinforcement steel for moderate 

axial load levels of 0.2 to 0.3, the SNI and ACI are 

very conservative. However, for the higher axial load 

levels, the provisions for the confining-reinforcement 

are below than the NZS and CSA. These findings 

implicate that the SNI and ACI standards are less 

profitable for low to moderate axial load levels. 
 

 

4. COLUMN DUCTILITY BEHAVIOUR 

 

At further stages, the influence of minimum 

confining-reinforcement designed based on the 

above-mentioned standards to the ductility behavior 

is evaluated. The evaluation is based on the moment-

curvature cross-section behavior of the column. For 

this study, a concrete compressive strength of 70 

MPa was taken. The specifications and strengths of 

the material remained unchanged, and the 

reinforcement configurations were as shown in 

Figure 1. The level of applied axial load is set to the 

highest, equal to 0.4. This was favored since at this 

load level the provisions from the SNI and ACI 

provisions are lower that of than the NZS and CSA. 

The high-strength concrete confinement model was 

based on the model as proposed by Antonius (2011); 

the stress-strain model is showed in Figure 8.  

 

 

 

 

 

 

 

 
Figure 8. Stress-strain model of confined high-strength 

concrete [Antonius, 2011] 

 

From the figure above, the following mathematical 

expressions were derived. 
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Stress of the confining-reinforcement at peak 

response for a square section is: 
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The ductile column behavior refers to the definition 

as expressed by Li & Park (2004). After the spalling 

of the concrete cover, the moment in the column 

increases, exceeding or at least equaling the moment 

at the first peak. Alternately, a relatively flat curve 

will result (condition 1). On the other hand, a less 

ductile column is characterized by a reduction in 

moment capacity, subsequent to cover spalling. It can 

also be said that the moment is lower than the first 

peak (condition 2). A more detailed description of the 

column’s ductility behavior is shown in Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9. Definition ductile columns 

 

 
4.1 The Influence of Axial Load Levels 

 

Figure 10 shows the moment-curvature behavior of a 

columns with the A configuration. The confining-

reinforcement steel yield stress varies from 400, 600 

to 800 MPa. At the relatively low axial load levels of 

0.2 it is shown that the curve is relatively flat after 

cover spalling. The opposite is seen for high axial 

load levels of 0.4.  

 

The moment-curvature behavior for column B is 

based on the minimum confining-reinforcement 

design of the SNI and ACI. It is shown that the 

moment declines after cover spalling. This 

phenomenon is true for both normal and high-

strength confining-reinforcement steel (Figure 11).  
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Figure 10. Behavior of Moment-curvature configuration A, 

the variation fy  
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Figure 11. Behavior of Moment-curvature configuration B, 

the variation fy  

 

 
4.2 Evaluation on the Moment-curvature Behavior based 

on each Standard 

 

The column ductility behaviors based on each 

standard are demonstrated by their moment-curvature 

curves and are shown in Figure 12, 13 and 14. 

Generally, the column ductility as provided by the 

provisions of the NZS and CSA are better when 

compared to the SNI and CSA, although the graphs 

also suggested that the reinforcing provision 

confinement adopted in the NZS is the most 

conservative. Observing the column with the A 

reinforcement configuration, it can be seen that the 
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moment as predicted by the NZS provision always 

increases significantly after cover spalling. The 

increase in moment even exceeded the first peak.  

 

The ductility behavior evaluation of column B is 

based on the minimum volumetric ratio, resulting in a 

maximum spacing which is far below the spacing of 

column A. The observation of curves suggested that 

after cover spalling all standards tend to result in a 

less ductile behavior. 
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Figure 12. Comparison of moment-curvature of each 

standard,  fy=400 MPa 
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Figure 13. Comparison of moment-curvature of each 

standard,   fy=600 MPa 
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Figure 14. Comparison of moment-curvature of each 

standard, fy=800 MPa 

 

Furthermore, high-strength confining-reinforcement 

steel is used to improve the ductility of high-strength 

concrete columns. The confining-reinforcement for 

column B is reduced to a minimum so that the 

volumetric ratio of the assembled confining-

reinforcement will be higher than what is required 

(resulting in an approximately similar spacing as 

column A). It was found that the ductility of the 

column increased significantly (Figure 15). 
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Figure 15. Improved ductility of the column configuration 

B  

 

 

5 CONCLUSION AND RECOMENDATION 

 

5.1 Conclusion 

 

From the result of the studies as discussed, the 

following conclusions can be drawn: 

1. The provisions for minimum confining-

reinforcement based on the SNI and ACI does not 

consider variability in axial load levels so that the 

ductility behavior remains unchanged, despite a 

change in the earthquake magnitude.  

2. Since the provisions of confining-reinforcement of 

the SNI and ACI code do not take into account the 

effects of axial load levels, the outcome will be 

underestimated if the structure is located in a 

strong earthquake-zone. 

3. The use of high-strength confinement steel is one 

solution to maintain a column’s ductility. 

4. The ductility of columns can be improved by 

simulating the design parameter (i.e., the 

configuration); utilizing the confining-

reinforcement volumetric ratio, and optimizing the 

spacing as well as utilizing the use of high-

strength steel. 
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5.2 Recommendation 

 

Accommodating the level of axial load on the 

minimum confining-reinforcement provisions into 

the SNI is highly recommended. However, for this 

purpose, it is necessary to develop a comprehensive 

research on the behavior of columns with variations 

in axial load levels, both analytically and 

experimentally.  
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NOTATIONS 

 

Ash = area of confining reinforcement 

bc = width of core column 

Ec = modulus elasticity of concrete 

εc = strain of concrete 

’co  = peak strain of unconfined concrete   

ε’cc = strain of confined concrete at peak  

 response 

85c   = strain of confined concrete at 85% of   

   confined concrete peak stress 

f’co  = peak stress of unconfined concrete  

fc = stress of concrete 

f’c = compressive strength of concrete cylinder  

   150/300 at 28 days 

f’cc = peak stress of confined concrete 

flat. = lateral stress  

fy = yield stress of confining-reinforcement/ 

   steel 

fyl = yield stress of longitudinal reinforcement 

fr  = residual stress of confined concrete  

fs = stress of confining-reinforcement at peak  

   response 

hc = length of core column 

K = strength enhancement of confined concrete 

s = spacing of confining-reinforcement (centre  

   to centre) 

ρs = volumetric ratio of confining- 

   reinforcement 

ρ = ratio of longitudinal reinforcement 

nl = number of longitudinal reinforcement 


