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Abstract  Generally, confinement models of the 

steel-fiber concrete were very ductile because the fiber has 

a significant influence on the increase of the concrete 

deformability. Nevertheless, the existing steel fibrous 

confined models now have significant differences between 

each other, especially the peak stress value and post peak 

behavior. It is some of the different reviewed design 

parameters that affect the stress-strain equation of 

developed confined steel-fiber concrete. This paper 

investigated the existing confinement models to evaluate 

pre- and post-peak behavior of experimental results of 

confined steel fiber concrete for square sections. This paper 

has discussed models of existing steel fibrous concrete 

restraints compared to the results of experiments. In 

general, it can be concluded that the Hsu model is able to 

predict the best K value and ascending branch curve toward 

the experiment results. However, in the unfettered concrete 

ductility of the descending branch curve, the predicted 

values of ε'cc and ε50cc, it can be said that all the models 

reviewed are still not able to model properly. The 

difference is mainly due to the parameters reviewed to 

lower the restraints of each model are not the same. The 

comparison results presented in this paper recommend the 

need for more complete experimental research with 

broader parameters such as cross-sectional shape, fiber 

ratio, and restraint bone characteristics, in order to lower 

the model of restraint more generally. 
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1. Introduction 

Steel fibrous concrete technology has grown rapidly and 

popularly in the last decade. Steel fibrous concrete is 

known to have excellent matrix bonding, high cracking 

firmness, good attachment property and ductile [1,2]. In 

addition, the material also has good fire resistance [3,4]. 

Due to materially ductile, steel fibrous concrete is very 

useful to be used in earthquake-resistant structures, 

especially in column structure components. 

As known, column structure plays a central role in 

maintaining the stability of structures such as building. In 

earthquake-resistant building structure column structure 

should have adequate ductility. If the fibrous steel column 

is installed bone restraint with a certain volumetric ratio, 

then the ductility will certainly increase significantly. To 

determine the security level of the column structure a 

model of restraint is required [5]. As with normal concrete 

(without fiber) high quality where the analysis of the 

fastener joint has also been widely researched [6,7], on 

steel fibrous concrete also continues to develop [8,9,10]. 

Similarly, the model of restraint continues to be developed 

but until now there is no model that is generally widely 

accepted as a reference for planning. These restraint 

models need to be evaluated in depth in order to find out 

the sensitivity of each model in modeling voltage-strain 

behavior before and after peak. 

2. Objective and Scope 

This paper presents the comparison of restraint model 

especially for predicting the behavior of high-quality 



870 On the Analytical Models of Confined High-Strength Steel-Fiber Concrete  

 

 

unfettered steel fibrous concrete. The comparison 

variations include voltage-strain behavior, increased 

strength of unfettered concrete (K), unfettered concrete 

peak strain (ε'cc) and unfettered concrete strain value when 

concrete voltage drops from peak voltage by 50% (ε50cc). 

High quality concrete in this paper has a press strength of 

more than 50 MPa. The steel-sided restraint models 

discussed were the Ganesan & Murthy proposal model [11], 

the Campione proposal model [12] and the Hsu &amp; Hsu 

proposal model [ 13]. 

2.1. Confinement Models of Steel-Fiber Concrete 

2.1.1. Model by Ganesan 

Ganesan and Murthy [11] proposed a model of restraint 

for steel fibrous concrete based on the test results of a 

number of unfettered concrete test objects by reviewing the 

reinforcing parameters and the percentage ratio of steel 

fibers by 1.5%. In his experiments, Ganesan used a fiber 

aspect ratio of 70. The increased strength of the unfettered 

concrete (K) is influenced by the hard press of the concrete 

(f'c) ratio and the melting voltage of the reinforcing bone (ρs 

and fy) as written in the equation (1). 

c
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The peak strain of unfettered concrete (ep) is influenced 

by the K value, fiber percentage and fiber shape factor (Ap) 

as presented in the equation (2). 
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2.1.2. Model by Hsu & Hsu 

Hsu & Hsu proposes a high-quality voltage-strain 

equation of unfettered steel fibrous which is the result of 

testing of concrete test objects with variations in steel fibre 

volume (0.5 percent, 0.75 percent and 1 percent), space and 

volumetric ratio of reinforcing joints. The voltage-strain 

model is expressed as follows: 
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Hsu & Hsu determined that for fibre volume of 0.5 

percent, β and C values are 8.70 and 2.61. Furthermore, for 

fibre content of 0.5 percent, the voltage and strain of 

unfettered concrete peaks are estimated as follows: 

ccc ff '95.197'    (in ksi)        (9) 

occ   2252.0'             (10) 

Based on the equations (9) and (10), the peak voltage 

and strain of unfettered concrete peaks depend on the ratio 

of reinforcing joints and strong press of concrete without 

restraints. 

2.1.3. Model by Campione 

The restraint model by Campione is a modification of 

the Hsu & Hsu model, where several parameters that 

determine the slope of the voltage-strain curve are 

modified. In full the model is as follows. 
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Descending branch: 
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where A=0.5811, B=1.93 dan C=-0.740 
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The increased strength and strain of unfettered concrete 

are shown in the equations (15) and (16). 
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2.2. Comparative Study of Confinement Models and 

Discussion 

The model of steel fibrous restraints that have been 

described above are further compared to each other, 

including their comparisons with the experiments of 

unfettered steel fibrous concrete. The experimental data 

were taken from the test results by Antonius [14], where 
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selected specimens that have a concrete press strength of 

50 MPa or more. According to the experimental data, the 

volume of steel fiber is 0.5 percent, and the aspect ratio of 

fiber is about 45. The effectiveness value of restraint refers 

to the concept proposed by Mander et al. [15,16]. 

2.3. Strain-Voltage Behaviours 

Figure 1 is a voltage-strain ratio curve of unfettered 

concrete to a concrete press strength of 51 MPa, with a 

variation in the volumetric ratio of reinforcing joints. 

Based on the figure, it appears that the Hsu model is closer 

to the results of experiments in the ascending branch area, 

although it has significant differences in the descending 

branch area. From these three models, it appears that the 

ascending branch curve of the Ganesan model is the 

steepest compared to other curves where it indicates that 

the Ganesan model has the highest initial rigidity. However, 

on the descending branch curve, the Ganesan model is 

concave with a slope curve that tends to ramp. These 

descending branch curves differ greatly from the same 

curves for Campione models that look very ductile. 

Significant differences in concrete voltage-strain behaviour 

between the Ganesan model and the experiment results also 

results from a review of fibre percentage and the ratio of 

different fibre aspects. Of the three existing restraint 

models, the Hsu model has a predicted peak voltage of 

unfettered concrete (f'cc) which is the closest to the f'cc value 

of the experiment results. 

Comparison of other voltage-strain behaviour is shown 

in Figure 2, where the concrete pressure strength is higher 

at 71.2 MPa. Similar to the comparison in Figure 1 above, 

the predicted f'cc value and ascending branch curve based 

on the Hsu model are the closest to the experiment results. 

However, the descending branch behaviour of the three 

models had significant differences with the results of the 

experiments. 

 

Figure 1.  Comparison of strain-voltage behaviors for f’c=51 MPa 

 

Figure 2.  Comparison of strain-voltage behaviors for f’c=71.2 MPa 
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Table 1.  Values of K, ε’cc dan ε50cc 

Specimens 
Exp. Ganesan Campione Hsu 

K 
ccε'  

50ccε  K 
ccε'  

50ccε  K 
ccε'  

50ccε  K 
ccε'  

50ccε  

FC5 1.23 0.008 0.028 1.13 0.003 0.023 1.36 0.004 - 1.34 0.007 0.015 

FC6 1.12 0.005 0.016 1.08 0.003 - 1.23 0.004 - 1.14 0.005 0.012 

FC7 1.25 0.008 0.020 1.11 0.003 0.003 1.32 0.004 - 1.26 0.006 0.014 

FC8 1.25 0.008 0.02 1.09 0.003 0.012 1.27 0.004 - 1.21 0.007 0.014 

FC9 1.15 0.006 0.021 1.08 0.003 - 1.24 0.004 - 1.15 0.006 0.013 

Table 2.  Comparison of analytical results toward experiments 

Specimens 

Ganesan Campione Hsu 

Kanal/Kexp 
ε’cc(anal.)/ 

ε’cc(exp.) 

ε50cc(anal.)/  

ε50cc (exp.) 
Kanal/Kexp. 

ε’cc(anal.)/ 

ε’cc(exp.) 

ε50cc(anal.)/  

ε50cc (exp.) 
Kanal/Kexp 

ε’cc(anal.)/ 

ε’cc(exp.) 

ε50cc(anal.)/   

ε50cc (exp.) 

FC5 0.92 0.37 0.80 1.11 0.59 - 1.09 0.87 0.53 

FC6 0.96 0.51 - 1.10 0.84 - 1.02 0.98 0.71 

FC7 0.89 0.36 1.12 1.06 0.57 - 1.01 0.79 0.69 

FC8 0.87 0.34 0.58 1.02 0.54 - 0.97 0.81 0.68 

FC9 0.94 0.46 - 1.08 0.75 - 1.00 1.05 0.58 

 

2.4. Evaluation of K, ε’cc and ε50cc Value toward 

Experiment Result 

Table 1 is the K, ε'cc and ε50cc values from the result of 

experiments and models of restraints. When viewed the 

experimental results (Table 2), the K value based on the 

Ganesan model differs by at least 4 percent (specimen FC6) 

and a maximum of 13 percent (specimen FC8). A 

significant difference between predictions based on the 

Ganesan model is the value ε'cc (between 50 to 60 percent) 

even for ε50cc value prediction it turns out that two 

specimens are unpredictable (specimen FC6 and FC9). 

These results show that there are significant differences in 

the ductility of high quality unfettered fibrous concrete. 

On the other hand, the Campione model predicts a 

slightly better experimental K value than the Ganesan 

model above. Deviation of K value based on Campione 

model ranges from 2 percent to 11 percent. Similarly, in 

terms of predicted ε'cc, the maximum differs by 46 percent 

(specimen FC8). The value of ε50cc based on the 

Campione model is unpredictable, because in the post-peak 

response the Campione model is very ductile and only 

experienced a meaningless decrease in strength. This is in 

line with the voltage-strain behavior of the descending 

branches as shown in Figures 1 and 2 above. 

Compared to the two models of restraints above, the 

proposed Hsu model is able to predict the best K value of 

the experiment results. The biggest difference is only 9 

percent, even in specimen FC9 the predicted value is very 

precise. Similarly, in the comparison of ε'cc values where 

the difference between models and experiments is only 5 

percent to 21 percent. The Hsu model is also able to predict 

relatively better ε50cc values where predictions of different 

experiment results are maximum 42 percent (specimen 

FC9). 

3. Conclusions 

This paper has discussed the models of existing steel 

fibrous concrete restraints compared to the results of 

experiments. In general, it can be concluded that the Hsu 

model is able to predict the best K value and ascending 

branch curve toward the experiment results. However, in 

the unfettered concrete ductility of the descending branch 

curve, the predicted values of ε'cc and ε50cc, it can be said 

that all the models reviewed are still not able to model 

properly. The difference mainly results from the 

parameters reviewed to lower the restraints of each model 

are not the same. The comparison results presented in this 

paper recommend the need for more complete 

experimental research with broader parameters such as 

cross-sectional shape, fiber ratio, and restraint bone 

characteristics, in order to lower the model of restraint 

more generally. 
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