Lecture Notes on Data Engineering and Communications Technologies 176

Leonard Barolli Editor

Complex, Intelligent and Software Intensive Systems

Proceedings of the 17th International Conference on Complex, Intelligent and Software Intensive Systems (CISIS-2023)

Lecture Notes on Data Engineering and Communications Technologies

Series Editor

Fatos Xhafa, Technical University of Catalonia, Barcelona, Spain

The aim of the book series is to present cutting edge engineering approaches to data technologies and communications. It will publish latest advances on the engineering task of building and deploying distributed, scalable and reliable data infrastructures and communication systems.

The series will have a prominent applied focus on data technologies and communications with aim to promote the bridging from fundamental research on data science and networking to data engineering and communications that lead to industry products, business knowledge and standardisation.

Indexed by SCOPUS, INSPEC, EI Compendex.

All books published in the series are submitted for consideration in Web of Science.

Leonard Barolli Editor

Complex, Intelligent and Software Intensive Systems

Proceedings of the 17th International Conference on Complex, Intelligent and Software Intensive Systems (CISIS-2023)

Editor Leonard Barolli Department of Information and Communication Engineering Fukuoka Institute of Technology Fukuoka, Japan

ISSN 2367-4512ISSN 2367-4520 (electronic)Lecture Notes on Data Engineering and Communications TechnologiesISBN 978-3-031-35733-6ISBN 978-3-031-35734-3 (eBook)https://doi.org/10.1007/978-3-031-35734-3

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Welcome Message of CISIS-2023 International Conference Organizers

Welcome to the 17th International Conference on Complex, Intelligent and Software Intensive Systems (CISIS-2023), which will be held from July 5 to July 7, 2023, in conjunction with the 17th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS 2023).

The aim of the conference is to deliver a platform of scientific interaction between the three interwoven challenging areas of research and development of future ICT-enabled applications: software intensive systems, complex systems, and intelligent systems.

Software intensive systems are systems, which heavily interact with other systems, sensors, actuators, devices, other software systems, and users. More and more domains are involved with software intensive systems, e.g., automotive, telecommunication systems, embedded systems in general, industrial automation systems, and business applications. Moreover, the outcome of Web services delivers a new platform for enabling software intensive systems. The conference is thus focused on tools, practically relevant, and theoretical foundations for engineering software intensive systems.

Complex systems research is focused on the overall understanding of systems rather than its components. Complex systems are very much characterized by the changing environments in which they act by their multiple internal and external interactions. They evolve and adapt through internal and external dynamic interactions.

The development of intelligent systems and agents, which is each time more characterized by the use of ontologies and their logical foundations build a fruitful impulse for both software intensive systems and complex systems. Recent research in the field of intelligent systems, robotics, neuroscience, artificial intelligence, and cognitive sciences are very important factors for the future development and innovation of software intensive and complex systems.

This conference is aiming at delivering a forum for in-depth scientific discussions among the three communities. The papers included in the proceedings cover all aspects of theory, design, and application of complex systems, intelligent systems, and software intensive systems.

We are very proud and honored to have two distinguished keynote talks by Dr. Salvatore Venticinque, University of Campania "Luigi Vanvitelli", Italy, and Prof. Sanjay Kumar Dhurandher, Netaji Subhas University of Technology, India, who will present their recent work and will give new insights and ideas to the conference participants.

The organization of an International Conference requires the support and help of many people. A lot of people have helped and worked hard to produce a successful technical program and conference proceedings. First, we would like to thank all authors for submitting their papers, the Program Committee Members, and the reviewers who carried out the most difficult work by carefully evaluating the submitted papers. We are grateful to Honorary Chair Prof. Makoto Takizawa, Hosei University, Japan, for his guidance and support.

vi Welcome Message of CISIS-2023 International Conference Organizers

Finally, we would like to thank Web Administrator Co-Chairs for their excellent and timely work.

We hope you will enjoy the conference proceedings.

CISIS-2023 Organizing Committee

Honorary Chair

Makoto Takizawa Hosei University, Japan

General Co-chairs

Isaac Woungang	Toronto Metropolitan University, Canada
Tomoya Enokido	Rissho University, Japan

Program Committee Co-chairs

Marek Ogiela	AGH University of Technology, Poland
Naohiro Hayashibara	Kyoto Sangyo University, Japan
Sanjay Kumar Dhurandher	University of Delhi, India

International Advisory Board

David Taniar	Monash University, Australia
Minoru Uehara	Toyo University, Japan
Arjan Durresi	IUPUI, USA
Beniamino Di Martino	University of Campania "L. Vanvitelli", Italy

Award Co-chairs

Keita Matsuo	Fukuoka Institute of Technology, Japan
Kin Fun Li	University of Victoria, Canada
Olivier Terzo	LINKS Foundation, Italy

International Liaison Co-chairs

Wenny Rahayu	La Trobe University, Australia
Markus Aleksy	ABB AG Corporate Research Center, Germany

Flora Amato	University of Naples Federico II, Italy
Omar Hussain	University of New South Wales, Australia

Publicity Co-chairs

Takahiro Uchiya	Nagoya Institute of Technology, Japan
Antonio Esposito	University of Campania "Luigi Vanvitelli", Italy
Farookh Hussain	University of Technology Sydney, Australia

Finance Chair

Makoto Ikeda Fuk	kuoka Institute of Technology, Japan
------------------	--------------------------------------

Local Arrangement Co-chairs

Mehrdad Tirandazian	Toronto Metropolitan University, Canada
Glaucio Carvalho	Toronto Metropolitan University, Canada

Web Administrator Chairs

Phudit Ampririt	Fukuoka Institute of Technology, Japan
Ermioni Qafzezi	Fukuoka Institute of Technology, Japan

Steering Committee Chair

uoka Institute of Technology, Japan
Ø

Track Areas and PC Members

1. Database and Data Mining Applications

Track Co-chairs

Kin Fun Li	University of Victoria, Canada
Pavel Krömer	Technical University of Ostrava, Czech Republic

PC Members

Antonio Attanasio	LINKS Foundation, Italy
Tibebe Beshah	Addis Ababa University, Ethiopia
Jana Heckenbergerova	University of Pardubice, Czech Republic
Konrad Jackowski	Wroclaw University of Technology, Poland
Petr Musílek	University of Alberta, Canada
Aleš Zamuda	University of Maribor, Slovenia
Genoveva Vargas-Solar	French Council of Scientific Research,
	LIG-LAFMIA, France
Xiaolan Sha	Sky, UK
Kosuke Takano	Kanagawa Institute of Technology, Japan
Masahiro Ito	Toshiba Lab, Japan
Watheq ElKharashi	Ain Shams University, Egypt
Mohamed Elhaddad	University of Victoria, Canada
Wei Lu	Keene State College, USA

2. Artificial Intelligence and Bio-Inspired Computing

Track Co-chairs

Hai Dong	Royal Melbourne Institute of Technology,
	Australia
Salvatore Vitabile	University of Palermo, Italy
Urszula Ogiela	AGH University of Science and Technology,
	Poland

PC Members

Kit Yan Chan Shang-Pin Ma Pengcheng Zhang Le Sun

Sajib Mistry Carmelo Militello Klodiana Goga Vincenzo Conti Minoru Uehara Philip Moore Mauro Migliardi Curtin University, Australia National Taiwan Ocean University, Taiwan Hohai University, China Nanjing University of Information Science and Technology, China Curtin University, Australia Italian National Research Council, Italy LINKS Foundation, Italy University of Enna Kore, Italy Toyo University, Japan Lanzhou University, China University of Padua, Italy

Dario Bonino	CHILI, Italy
Andrea Tettamanzi	University of Nice, France
Cornelius Weber	Hamburg University, Germany
Tim Niesen	German Research Center for Artificial
	Intelligence (DFKI), Germany
Rocco Raso	German Research Center for Artificial
	Intelligence (DFKI), Germany
Fulvio Corno	Politecnico di Torino, Italy

3. Multimedia Systems and Virtual Reality

Track Co-chairs

Yoshinari Nomura	Okayama University, Japan
Francesco Orciuoli	University of Salerno, Italy
Shinji Sugawara	Chiba Institute of Technology, Japan

PC Members

Shunsuke Mihara Shunsuke Oshima

Yuuichi Teranishi Kazunori Ueda Hideaki Yanagisawa

Kaoru Sugita Keita Matsuo Santi Caballé Nobuo Funabiki Yoshihiro Okada Tomoyuki Ishida Nicola Capuano Jordi Conesa Farzin Asadi David Gañan Le Hoang Son Jorge Miguel David Newell Lockon Inc., Japan Kumamoto National College of Technology, Japan NICT, Japan Kochi University of Technology, Japan National Institute of Technology, Tokuyama College, Japan Fukuoka Institute of Technology, Japan Fukuoka Institute of Technology, Japan Open University of Catalonia, Spain Okayama University, Japan Kyushu University, Japan Fukuoka Institute of Technology, Japan University of Basilicata, Italy Universitat Oberta de Catalunya, Spain Kocaeli University, Kocaeli, Turkey Universitat Oberta de Catalunya, Spain Vietnam National University, Vietnam Grupo San Valero, Spain Bournemouth University, UK

4. Next-Generation Wireless Networks

Track Co-chairs

Marek Bolanowski	Rzeszow University of Technology, Poland
Sriram Chellappan	Missouri University of Science and Technology,
	USA

PC Members

Yunfei Chen	University of Warwick, UK
Elis Kulla	Fukuoka Institute of Technology, Japan
Santi Caballé	Open University of Catalonia, Spain
Admir Barolli	Aleksander Moisiu University of Durres, Albania
Makoto Ikeda	Fukuoka Institute of Technology, Japan
Keita Matsuo	Fukuoka Institute of Technology, Japan
Shinji Sakamoto	Kanazawa Institute of Technology, Japan
Omer Wagar	University of Engineering & Technology, Poland
Zhibin Xie	Jiangsu University of Science and Technology,
	China
Jun Wang	Nanjing University of Post and
	Telecommunication, China
Vamsi Paruchuri	University of Central Arkansas, USA
Arjan Durresi	IUPUI, USA
Bhed Bista	Iwate Prefectural University, Japan
Tadeusz Czachórski	Polish Academy of Sciences, Poland
Andrzej Paszkiewicz	Rzeszow University of Technology, Poland

5. Semantic Web and Web Services

Track Co-chairs

Antonio Messina	Italian National Research Center (CNR), Italy
Aneta Poniszewska-Maranda	Lodz University of Technology, Poland
Salvatore Venticinque	University of Campania "Luigi Vanvitelli", Italy
PC Members	

Alba Amato	Italian National Research Center (CNR), Italy
Nik Bessis	Edge Hill University, UK

Robert Bestak	Czech Technical University in Prague,
	Czech Republic
Ivan Demydov	Lviv Polytechnic National University, Ukraine
Marouane El Mabrouk	Abdelmalek Essaadi University, Morocco
Corinna Engelhardt-Nowitzki	University of Applied Sciences, Austria
Michal Gregus	Comenius University in Bratislava, Slovakia
Jozef Juhar	Technical University of Košice, Slovakia
Nikolay Kazantsev	National Research University Higher School of
	Economics, Russia
Manuele Kirsch Pinheiro	Université Paris 1 Panthéon Sorbonne, France
Cristian Lai	CRS4 Center for Advanced Studies, Research and
	Development in Sardinia, Italy
Michele Melchiori	Universita' degli Studi di Brescia, Italy
Giovanni Merlino	University of Messina, Italy
Kamal Bashah Nor Shahniza	Universiti Teknologi MARA, Malaysia
Eric Pardede	La Trobe University, Australia
Pethuru Raj	IBM Global Cloud Center of Excellence, India
Jose Luis Vazquez Avila	University of Quintana Roo, México
Anna Derezinska	Warsaw University of Technology, Poland

6. Security and Trusted Computing

Track Co-chairs

Hiroaki Kikuchi	Meiji University, Japan
Jindan Zhang	Xianyang Vocational Technical College, China
Lidia Fotia	University of Calabria, Italy

PC Members

Saqib Ali
Zia Rehman
Morteza Saberi
Sazia Parvin
Farookh Hussain
Walayat Hussain
Sabu Thampi

Sun Jingtao Anitta Patience Namanya

Sultan Qaboos University, Oman
COMSATS University Islamabad, Pakistan
UNSW Canberra, Australia
UNSW Canberra, Australia
University of Technology Sydney, Australia
University of Technology Sydney, Australia
Indian Institute of Information Technology and
Management - Kerala (IIITM-K) Technopark
Campus, India
National Institute of Informatics, Japan
University of Bradford, UK

Smita Rai	Uttarakhand Board of Technical Education Roorkee, India
Abhishek Saxena	American Tower Corporation Limited, India
Ilias K. Savvas	University of Thessaly, Greece
Fabrizio Messina	University of Catania, Italy
Domenico Rosaci	University Mediterranea of Reggio Calabria

7. HPC & Cloud Computing Services and Orchestration Tools

Track Co-chairs

Olivier Terzo	LINKS Foundation, Italy
Jan Martinovič	IT4Innovations National Supercomputing Center,
	VSB Technical University of Ostrava,
	Czech Republic
Jose Luis Vazquez-Poletti	Universidad Complutense de Madrid, Spain

PC Members

Alberto Scionti	LINKS Foundation, Italy
Antonio Attanasio	LINKS Foundation, Italy
Jan Platos	VŠB-Technical University of Ostrava,
	Czech Republic
Rustem Dautov	Kazan Federal University, Russia
Giovanni Merlino	University of Messina, Italy
Francesco Longo	University of Messina, Italy
Dario Bruneo	University of Messina, Italy
Nik Bessis	Edge Hill University, UK
Ming Xue Wang	Ericsson, Ireland
Luciano Gaido	Istituto Nazionale di Fisica Nucleare (INFN), Italy
Giacinto Donvito	Istituto Nazionale di Fisica Nucleare (INFN), Italy
Andrea Tosatto	Open-Xchange, Germany
Mario Cannataro	University "Magna Græcia" of Catanzaro, Italy
Agustin C. Caminero	Universidad Nacional de Educación a Distancia,
Deve Dete	Spain
Dana Petcu	West University of Timisoara, Romania
Marcin Paprzycki	Systems Research Institute, Polish Academy of
	Sciences, Poland
Rafael Tolosana	Universidad de Zaragoza, Spain

8. Parallel, Distributed, and Multicore Computing

Track Co-chairs

Eduardo Alchieri	University of Brasilia, Brazil
Valentina Casola	University of Naples "Federico II", Italy
Lidia Ogiela	AGH University of Science and Technology,
	Poland

PC Members

Aldelir Luiz	Catarinense Federal Institute, Brazil
Edson Tavares	Federal University of Technology - Parana, Brazil
Fernando Dotti	Pontificia Universidade Catolica do Rio Grande
	do Sul, Brazil
Hylson Neto	Catarinense Federal Institute, Brazil
Jacir Bordim	University of Brasilia, Brazil
Lasaro Camargos	Federal University of Uberlandia, Brazil
Luiz Rodrigues	Western Parana State University, Brazil
Marcos Caetano	University of Brasilia, Brazil
Flora Amato	University of Naples "Federico II", Italy
Urszula Ogiela	AGH University of Science and Technology,
	Poland

9. Energy-Aware Computing and Systems

Track Co-chairs

Muzammil Behzad	University of Oulu, Finland
Zahoor Ali Khan	Higher Colleges of Technology,
	United Arab Emirates
Shigenari Nakamura	Tokyo Denki University, Japan

PC Members

Naveed Ilyas

Muhammad Sharjeel Javaid Muhammad Talal Hassan Waseem Raza Gwangju Institute of Science and Technology, South Korea
University of Hafr Al Batin, Saudi Arabia
COMSATS University Islamabad, Pakistan
University of Lahore, Pakistan

Ayesha Hussain	COMSATS University Islamabad, Pakistan
Umar Qasim	University of Engineering and Technology,
	Pakistan
Nadeem Javaid	COMSATS University Islamabad, Pakistan
Yasir Javed	Higher Colleges of Technology, UAE
Kashif Saleem	King Saud University, Saudi Arabia
Hai Wang	Saint Mary's University, Canada

10. Multi-agent Systems, SLA Cloud, and Social Computing

Track Co-chairs

Giuseppe Sarnè	Mediterranean University of Reggio Calabria,
	Italy
Douglas Macedo	Federal University of Santa Catarina, Brazil
Takahiro Uchiya	Nagoya Institute of Technology, Japan

PC Members

Mario Dantas	Federal University of Juiz de Fora, Brazil
Luiz Bona	Federal University of Parana, Brazil
Márcio Castro	Federal University of Santa Catarina, Brazil
Fabrizio Messina	University of Catania, Italy
Hideyuki Takahashi	Tohoku University, Japan
Kazuto Sasai	Ibaraki University, Japan
Satoru Izumi	Tohoku University, Japan
Domenico Rosaci	Mediterranean University of Reggio Calabria, Italy
Lidia Fotia	Mediterranean University of Reggio Calabria, Italy

11. Internet of Everything and Machine Learning

Track Co-chairs

Omid Ameri Sianaki	Victoria University Sydney, Australia
Khandakar Ahmed	Victoria University, Australia
Inmaculada Medina Bulo	Universidad de Cádiz, Spain

PC Members

Farhad Daneshgar	Victoria University Sydney, Australia
M. Reza Hoseiny F.	University of Sydney, Australia
Kamanashis Biswas (KB)	Australian Catholic University, Australia
Khaled Kourouche	Victoria University Sydney, Australia
Huai Liu	Victoria University Sydney, Australia
Mark A. Gregory	RMIT University, Australia
Nazmus Nafi	Victoria Institute of Technology, Australia
Mashud Rana	CSIRO, Australia
Farshid Hajati	Victoria University Sydney, Australia
Ashkan Yousefi	Victoria University Sydney, Australia
Nedal Ababneh	Abu Dhabi Polytechnic, Abu Dhabi, UAE
Lorena Gutiérrez-Madroñal	University of Cádiz, Spain
Juan Boubeta-Puig	University of Cádiz, Spain
Guadalupe Ortiz	University of Cádiz, Spain
Alfonso García del Prado	University of Cádiz, Spain
Luis Llana	Complutense University of Madrid, Spain

CISIS-2023 Reviewers

Adhiatma Ardian Ali Khan Zahoor Amato Alba Amato Flora Barolli Admir Barolli Leonard Bista Bhed Buhari Seyed Chellappan Sriram Chen Hsing-Chung Cui Baoiiang Dantas Mario Di Martino Beniamino Dong Hai Durresi Arjan Enokido Tomoya Esposito Antonio Fachrunnisa Olivia Ficco Massimo Fotia Lidia

Fun Li Kin Funabiki Nobuo Gotoh Yusuke Hussain Farookh Hussain Omar Javaid Nadeem Ikeda Makoto Ishida Tomoyuki Kikuchi Hiroaki Kushida Takayuki KullaElis Matsuo Keita Mizera-Pietraszko Jolanta Mostarda Leonardo Nakashima Makoto Oda Tetsuya Ogiela Lidia Ogiela Marek Okada Yoshihiro Palmieri Francesco

Park Hyunhee Paruchuri Vamsi Krishna Poniszewska-Maranda Aneta Rahayu Wenny Sakamoto Shinji Scionti Alberto Sianaki Omid Ameri Spaho Evjola Takizawa Makoto Taniar David Terzo Olivier Uehara Minoru Venticinque Salvatore Woungang Isaac Xhafa Fatos Yim Kangbin Yoshihisa Tomoki

CISIS-2023 Keynote Talks

Evolution of Intelligent Software Agents

Salvatore Venticinque

University of Campania "Luigi Vanvitelli", Caserta, Italy

Abstract. The talk will focus on the evolution of models, techniques, technologies, and applications of software agents in the last years. Rapidly evolving areas of software agents range from programming paradigms to artificial intelligence. Driven by different motivations, an heterogeneous body of research is carried out under this banner. In each research area, the acceptance of agents has always been at once critical or skeptical and enthusiastic for promising future opportunities. Nevertheless, the efforts have been continuously spent to advance the research in this field. One example is the semantic Web vision, whereby machine-readable Web data could be automatically actioned upon by intelligent software Web agents. Maybe it has yet to be realized; however, semantic enrichment of Web metadata of digital archives is constantly growing including links to domain vocabularies and ontologies by supporting more and more advanced reasoning.

Securing Mobile Wireless Networks

Sanjay Kumar Dhurandher

Netaji Subhas University of Technology, New Delhi, India

Abstract. The area of mobile computing aims toward providing connectivity to various mobile users. There is an increasing demand by users that the information be available to them at any place and at any time. This has led to more use of mobile devices and networks. Since the wireless networks such as WLAN and Wi-Fi require the use of the unlicensed ISM band for data communication, there are increased threats to users because the data may be modified/fabricated. Additionally, these types of networks are further prone to various other threats which may even result in cyber-attacks and cyber-crime. Thus, it is a need to protect the users/devices from such threats leading to loss of important financial data and in some cases leakage of important defense documents of certain targeted countries.

Contents

Quantum Algorithms for Trust-Based AI Applications Davinder Kaur, Suleyman Uslu, and Arjan Durresi	1
Energy-Saving Multi-version Timestamp Ordering Algorithm for Virtual Machine Environments <i>Tomoya Enokido, Dilawaer Duolikun, and Makoto Takizawa</i>	13
Towards a Blockchain-Based Crowdsourcing Method for Robotic Ontology Evolution Wafa Alharbi and Farookh Khadeer Hussain	21
Performance Evaluation of DTAG-Based Recovery Method for DTN Considering a Real Urban Road Model	30
An Energy-Aware Dynamic Algorithm for the FTBFC Model of the IoT Dilawaer Duolikun, Tomoya Enokido, and Makoto Takizawa	38
A CCM, SA and FDTD Based Mesh Router Placement Optimization in WMN Yuki Nagai, Tetsuya Oda, Kyohei Toyoshima, Chihiro Yukawa, Sora Asada, Tomoaki Matsui, and Leonard Barolli	48
Design of Communication Protocol for Virtual Power Plant System in Distribute Environment	59
Fine-Tuning VGG16 for Alzheimer's Disease Diagnosis Huong Hoang Luong, Phong Thanh Vo, Hau Cong Phan, Nam Linh Dai Tran, Hung Quoc Le, and Hai Thanh Nguyen	68
Solving University Course Scheduling with Varied Constraints Using Integer Linear Programming	80
A Novel Hybrid Model Based on CNN and Bi-LSTM for Arabic Multi-domain Sentiment Analysis Mariem Abbes, Zied Kechaou, and Adel M. Alimi	92

A Cost-Sensitive Ensemble Model for e-Commerce Customer Behavior Prediction with Weighted SVM 103 Jing Ning, Kin Fun Li, and Tom Avant Design and Performance Evaluation of a Fuzzy-Based System Shunya Higashi, Phudit Ampririt, Ermioni Oafzezi, Makoto Ikeda, Keita Matsuo, and Leonard Barolli Comparing Sampling Strategies for the Classification of Bi-objective Pavel Krömer and Vojtěch Uher Efficient FPGA Implementation of a Convolutional Neural Network Takehiro Miura, Shuto Abe, Taito Manabe, Yuichiro Shibata, Taiichiro Kosaka, and Tomohiko Adachi A Mobile-Oriented GPU Implementation of a Convolutional Neural Yasutoshi Araki, Takuho Kawazu, Taito Manabe, Yoichi Ishizuka, and Yuichiro Shibata A Fuzzy-Based Error Driving System for Improving Driving Performance in VANETs 161 Ermioni Qafzezi, Kevin Bylykbashi, Shunya Higashi, Phudit Ampririt, Keita Matsuo, and Leonard Barolli Performance Evaluation of FC-RDVM and RIWM Methods for WMNs by WMN-PSOHCDGA System Considering Different Instances and Subway Distribution 170 Admir Barolli, Shinji Sakamoto, Leonard Barolli, and Makoto Takizawa A Cuckoo Search Based Simulation System for Node Placement Problem in Wireless Mesh Networks 179 Kaho Asakura and Shinji Sakamoto A Lightweight Botnet Exploiting HTTP for Control Flow Denial on Open-Source Medical Systems 188 Wei Lu A Strong Identity Authentication Scheme for Electric Power Internet of Things Based on SM9 Algorithm 200 Ji Deng, Lili Zhang, Lili Jiao, Yongjin Ren, and Qiutong Lin

xxiv

Contents

Contents	XXV
CPU Usage Prediction Model: A Simplified VM Clustering Approach Rebeca Estrada, Irving Valeriano, and Xavier Aizaga	210
An Adaptive Virtual Node Management Method for Overlay Networks Based on Multiple Time Intervals Tatsuya Kubo and Tomoya Kawakami	222
Ride-Sharing Allocation System and Optimal Path-Finding Algorithm for Marine Taxies in the Setouchi Inland Sea Area Shiojiri Ryota, Takegami Risa, Murakami Yukikazu, Tokunaga Hidekazu, and Kimura Yuto	233
Issues and Challenges When Metaverse Replaces the Workplace Ardian Adhiatma, Nurhidayati, and Olivia Fachrunnisa	243
Customer Engagement in Online Food Delivery Alifah Ratnawati and Sri Wahyuni Ratnasari	250
Human-AI-powered Strategies for Better Business Applications Josef Mayrhofer	260
The Role of Affective and Cognitive Engagement in Process of Knowledge Creation and Implementation	269
Improving Business Success Through the Use of Business Capital Management and Accounting Information Luluk Muhimatul Ifada, Rita Rosalina, and Chrisna Suhendi	278
Psychological Achievement Leadership: A New Leadership Style Based on Psychological Work Contract and Achievement Motivation <i>Ratih Candra Ayu, Olivia Fachrunnisa, and Ardian Adhiatma</i>	292
Semantic Wrap and Personalized Recommendations for Digital Archives Alba Amato, Rocco Aversa, Dario Branco, and Salvatore Venticinque	299
Towards the Interoperability of Metadata for Cultural Heritage Alba Amato	309
A Methodology for Formal Modeling and Evaluation of the Judicial Process Angelo Ambrisi, Rocco Aversa, Marta Maurino, and Salvatore Venticinque	318
A Comparative Analysis of Formal Storytelling Representation Models Luigi Colucci Cante, Beniamino Di Martino, and Mariangela Graziano	327

Towards the Reconstruction of the Evolutionary Behaviour of Finite State Machines in the Juridical Domain Dario Branco, Luigi Colucci Cante, Beniamino di Martino, Antonio Esposito, and Vincenzo De Lisi	337
Reinforcement Learning-Based Root Planner for Electric Vehicle Pietro Fusco, Dario Branco, and Salvatore Venticinque	348
A Study of Visualization System for Learning QoS Control Kazuaki Yoshihara, Katsuhisa Fujii, and Nobukazu Iguchi	358
A Study on Changing Consciousness of Post Coronavirus Pandemic in Fashion Society and Use of Digital Technology Momoko Sakaguchi, Eiji Aoki, and Koichi Nagamatsu	367
Spatial Interpolation of Room Impulse Responses Using Information on Early Reflection Directions	377
Co-browsing Cubic Gantt Charts with VR Goggles for Collaborative Immersive Visual Data Analytics	384
Hand Gesture Input Interface as Native Function of <i>IntelligentBox</i> Using Leap Motion Controller <i>Takumi Takeshita and Yoshihiro Okada</i>	395
Author Index	407

Contents

xxvi

to determine the optimal angle, proved to be more efficient than the conventional method for both routes, taking less time to complete. The measured time of the proposed method was shorter than that of the conventional method under identical circumstances. Notably, for each of the four measured times using the proposed method, the predicted time was longer than the measured time for the Megijima-Takamatsu Port route, while the predicted time for the Takamatsu PortMegijima route was longer than the time measured using the proposed method. One probable reason for the difference between the simulated and measured values using the proposed method is the inadequate calculation of wave effects. For future improvement, we suggest reducing the error by accounting for the angle of the head to the direction of the waves, the weight of the vessel, and the surface area where the vessel comes in contact with seawater while calculating the amount of deceleration, in addition to the constant speed deceleration according to wave height.

3.4 Future Issues

To operationalize the simulator, we propose the incorporation of GPS technology to obtain the current location of the vessel. We suggest the use of Google Maps JavaScript API Elevation service to discern between land and sea when navigating near islands. The Elevation service returns positive values for land coordinates and negative values for sea coordinates, which provides a basis for determining the terrain. Additionally, the simulation was conducted in Euclidean space, but the spherical shape of the Earth introduces errors when navigating. Hence, we recommend modifying the simulation program input in this study to operate based on latitude and longitude instead of Euclidean space coordinates.

4 Simulation Results

4.1 Ride-Sharing Allocation System

Twenty reservation records were generated, and a scenario was assumed where two vessels were allocated to carpool these reservations. The optimal carpooling patterns for each of the generated reservations were as follows. Although several combinations may lead to such patterns, the reward in both cases was 700, which represents the optimal solution. The test was executed with 100 training sessions, 10 operations per episode, and 1,000 trials. Table 3 displays the top three rewards that were frequently obtained after three runs of the program, each comprising 1,000 trials. The figures in parentheses specify the number of times the rewarding combination was chosen throughout the trials.

These outcomes suggest that the present program can allocate vessels to some degree, while it remains challenging to achieve an optimal resolution.

4.2 Optimal Path Finding Algorithm

An instance of a simulation that searches for an optimal route for a ship is presented, where the optimal route from the port of Naoshima to the port of Shodoshima is obtained.

	1st run	2nd run	3rd run
1	460(313)	450(271)	430(727)
2	430(267)	240(238)	450(196)
3	280(140)	230(165)	570(41)

Table 3. Results with 100 studies

During the analysis, a map image which depicts the departure and destination ports is loaded. Yahoo! Maps was used in the analysis. The pixel size in the Euclidean space was considered as 1 in the computation. Dummy data were employed for the tidal currents, where $(u_x, u_y) = (-1.8, 0.2)$ [m/s], and the east and north directions were consistently positive for all coordinates owing to the simulation area being small in the Seto Inland Sea. The wave height was uniformly set to H = 1.5 [m] for all coordinates as dummy data.

When searching for a potential route for the vessel, two paths are explored, one to the right and the other to the left, every time it maneuvers around an island. Hence, as the sailing distance increases and the obstacles between the departure and destination ports become more complex, an increasing number of potential paths will be searched. If some of the solutions diverge owing to obstacles or the vessel fails to reach the destination port altogether, or when a detour route is being investigated, the search may become protracted. Thus, an upper limit is established for the number of turns and solutions that do not converge or detours from the candidate optimal routes are excluded. In this simulation, when the number of turns reaches 30, the path is removed from the list of candidate shortest paths as an unsuitable path, and the next candidate path is sought. Figure 2 exhibits the simulation outcomes.

Fig. 2. Optimal route from Naoshima to Shodoshima

The upper arrow in Fig. 2 represents the straight line between the departure port and the destination port, whereas the lower arrow represents the optimal route between these two ports. The simulation outcomes are deemed accurate as they are equivalent to the optimal path that can be anticipated based on their appearance. Table 4 illustrates the distance to be covered, elapsed time, and direction to be taken by the vessel at regular intervals once the optimal path has been established. While the optimal path is determined every 30 s in actual simulations, this paper showcases the simulation results of the optimal path at 5-min intervals. The last line of the Table 4 shows the time, distance covered, and direction of travel upon the vessel arriving at the destination port on Shodoshima Island.

Elapsed time(min)	Distance traveled (km)	Direction of travel(°)	
0	0	1.9678	
5	2.9564	1.9678	
10	5.9128	1.9678	
15	8.8607	1.1696	
20	11.7992	1.1696	
25	14.7377	15.3546	
27.9998	17.3100	41.8631	

Table 4. Simulation result

5 Related Work

This chapter presents related research. Firstly, we describe related work on The Sharing Allocation System. Kurozumi et al. [5] investigated a Min–Max type cab dispatching problem, considering shared-riding. In their study, they introduced a standard deviation into the objective function to minimize the longest route taken by shared cabs. To solve this problem, we proposed a new neighborhood operation, combined with the tabu search method. Our approach differs from the tabu search method in that we use the optimal combination for carpooling, rather than individual cars. While Kurozumi et al. evaluated combinations based on the shortest path distance, we evaluated a combination that satisfies constraint conditions as a superior combination, with a larger number of passengers on board.

Next, we discuss related research on the Optimal Path Finding Algorithm. Hukuchi et al. [6] used a time-optimal control method to find the voyage time of a ship, which minimizes the evaluation function. They obtained the optimal path by considering the effects of waves and ocean currents. In comparison, Hagiwara et al. [7] developed a simulation program using forward dynamic programming to calculate the optimal route of an aircraft. Specifically, they studied the flight performance of a Boeing 747,400 flying between Narita and San Francisco, and simulated optimal routes by clarifying the relationship between flight altitude, airspeed, and fuel consumption relative to aircraft weight. To find the optimal path, they set transit points at regular intervals between destinations and recalculated the optimal path while the aircraft flew towards the next transit point, rather than the original destination. Similarly, we applied this method to a small vessel, a sea taxi, in our research.

6 Conclusions

In this study, an algorithm to identify optimal routes from departure to destination ports was presented, aiming to enhance the efficiency of marine transportation. Initially, a route which circumvents obstacles between the departure and destination ports was planned, and subsequently, the direction of navigation was computed after compensating for environmental factors, such as currents and waves, along the route. In future studies, an additional function will be incorporated to enable the collection of real-time data such as tidal currents and waves, through an API, for practical applications.

References

- 1. Setouchi Triennale Committee: Setouchi Triennale 2022. https://setouchiartfest.jp/about/out line2022.html
- 2. "PortRait Takamatsu Port, a hub of logistics and liveliness connected to the world", https:// www.umeshunkyo.or.jp/209/309/index.html, "Japan Landfill Dredging Association 2020"
- Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
- Akira, H., Akihiko, H.: Optimal Routing to the Destination. Japan Institute of Navigation 83 (1990)
- 5. Suzuho, K., Rei, E., Hiroyuki, E.: min-max type cab dispatching problem considering shared rides. Information Processing Society of Japan **84** (2022)
- 6. Op.cit: Optimal Routing to the Destination. Japan Institute of Navigation 83 (1990)
- Hagiwara, H., Suzuki, R., Ikuta, Y.: A Study on the Optimization of Aircraft Route. Japan Institute of Navigation 91 (1994)

Issues and Challenges When Metaverse Replaces the Workplace

Ardian Adhiatma^(⊠), Nurhidayati, and Olivia Fachrunnisa

Department of Management, Faculty of Economics, UNISSULA, Semarang, Indonesia {ardian, olivia.fachrunnisa}@unissula.ac.id

Abstract. This study aims to develop a conceptual framework that describes the essentials needed when an organization uses the metaverse as an alternative to virtual offices. Recent discussion in the existing literature widely concludes that hybrid working offers high productivity, wellbeing, and employee mental health. However, not all work types can be done through metaverse, while certain parts of work might be finished in the metaverse. Another discussion also offers that the metaverse as a place for leisure rather than work. Drawing from a review of the current literature and interviews with three senior leaders, we provide detailed insight ranging from essential needs to strategy for maximizing the metaverse as a virtual office, an action list to be taken by the top management team, and modifications to organizational policies and practices that can be considered for implementation. The specific outcome to be targeted in this research is to understand the opportunities and challenges of the future of work and workplace.

Keywords: Metaverse \cdot Future work \cdot Future workplace \cdot Mental health \cdot Wellbeing \cdot Virtual environment

1 Introduction: Metaverse as Future Workplace

Mark Zukerberg has imagined a future working in the metaverse, with people teleporting as holograms present at the office, banishing the need for commuting. This can bring about a sense of awkwardness, as this vision promotes the 'feeling' of being in the room together, having a shared sense of space, and making eye contact. However, there are other uses of VR in the workplace, such as technical training, socializing, and onboarding. For Meta, the challenge will be understanding and proving where VR will make the difference. This continues to be an issue that they have not been clear about. Various research has been conducted on the advantages of the metaverse, with varying conclusions. There are also discussions on what must be prepared in order to implement hybrid offices. Additionally, issues on how much one can handle anxiety, migraine, and nausea as a consequence of virtual or hybrid offices linger to be solved. As such, there are still opportunities for a wider discussion on the chances of utilizing the metaverse as an option for virtual offices.

Numerous studies have proven that hybrid work positively impacts productivity. For instance, [1] mentions that working in the metaverse can help reduce issues with overpopulation and help maintain environmental sustainability. At the same time, [2] also suggests that the metaverse will accelerate the success of digital transformation in the workplace. Results from a literature survey conducted by [3] on employee experience in the metaverse provide a summary that the requirements on its infrastructure, such as text mining and analytics and data visualization, will become part of the hard infrastructure, and employee adaptability, as part of the soft infrastructure, is a vital elements in need of awareness. Aside from that, metaverse will be of frequent use in training programs and development [4], recruitment [5] and also within the area of customer service [6].

When various research and opinions state that the metaverse is an alternative virtual office that results in many benefits [7, 8], what do organizations need to prepare to respond to this phenomenon? This article aims to provide insights into what is needed in designing a metaverse as a hybrid or virtual office so that factors such as productivity and the mental health of each organizational member are well maintained.

2 Finding Insights: Methodology

To gain insight into these changes and how to prepare for them, we conducted a survey of 17 literatures with the theme of the future of workplace, metaverse as a workplace, the digital office, the virtual office, and essentials things towards hybrid works. In addition, we also analyzed the transcript of an interview with three senior consultants of leading executive search firms, published in YouTube and as a podcast. We did so understand how they perceived the changing role of leaders, given that they assist organizations in identifying the metaverse as an office alternative.

3 Essentials Need for Metaverse as Future Workplace

3.1 Digital Global Leadership

Global and digital leadership is an activity within cognitive competence that results in effective behavior that is effective in understanding digitalization prospects. Whereby they can carry out all their assignments with little to no obstacles due to the ease of digitalization. Each competent global leader will have a stronger instinct for managing relevant information, observing contextual signals, behaviors, and cultures, along with the capability to connect this information, resulting in a meaningful pattern. Global leaders can also develop a complex perception regarding their very own context of productivity. Global leaders differentiate between their work context and their work process, especially if a leader possesses the initiative to conduct change on a global scale.

3.2 Digital Ethics

The digital environment carries specific challenges for building communication and socialization ethics, which are then referred to as 'digital work ethics'. As expected, we cannot easily convert the similarity between work ethics in the offline environment and work ethics in the virtual environment. Digital ethics have been discussed many

times in previous literature and are defined as a formulae system or rules in communication behavior for maintaining a relationship with other stakeholders according to their respective roles and positions both within the formal and informal relationship through the digital media. [9] defines digital ethics as individual values and ethical morals in using technology responsibly within the digital era.

In this research, we argue that leaders need to build digital ethics for spiritual engagement of employees. Since the possibility of work relationships in the metaverse is the limited of face-to-face interaction, this does not mean an ignorance of the importance of shaping employee engagement. By initiating 'digital work ethics' in the metaverse, we hope that employees will still engage with the organization's goals and values.

4 Strategy to Maximize Metaverse as Future Workplace

Our analysis from the existing literature and by observing a few transcripts on how to maximize metaverse as future workplace led us to the following three strategies that must be implemented by leaders:

a. Encourage the productivity

When organizations decide to carry out the hybrid working policy through the medium of a virtual office, leaders must assure the measurement of productivity and outcome that must be met by each member of the organization. Employees will be given freedom to finalize their work, utilizing the resources that are made available within the organization, and also make sure that work can be delivered in a timely manner.

b. Encourage the flexibility

The use of virtual offices offers flexibility in works schedule and pattern of executing work. As such, policies on the use of metaverse as a virtual office must be balanced with work flexibility. Research shows that work flexibility will work out when stabilized with work goal certainty, adequate facilities, and work characteristics that are capable of being completed from anywhere or working from anywhere. This work flexibility will make allow each member of the organization that collaborates in different location and different time zone to arrange a mutual decision in when and how they will carry out work.

c. Encourage the connectivity

However, each individual that is part of a virtual work team is a human. They possess the basic needs to socialize and connect with each other. When the metaverse becomes an option, leaders must make sure that sometime in the future, they can have physical rooms to socialize with each other and build emotional bonding. Nowadays, there are many applications and tools that can be utilized to facilitate affective connection in the virtual room. However, we argue that a physical office today is not only for completing work, but more than that, it is a room to socialize and fulfill connective needs both mentally and spiritually. Offices or work cubicles are not only defined as a place to complete work but more so as a 'value space and learning space', a place to increase the value that we have as human beings and also a place to continue learning to become a better self. As a 'value space' offices provide a social room for their employees, facilitate relationships, and create innovative collaborations.

5 Action List for Top Management Team

The following actions must be taken by the top management team when creating the metaverse as a virtual workplace:

a. Build shared understanding

Shared understanding is an effort to create a similar understanding and perception among all individuals within an organization regarding the foundational philosophy of why the top management team creates the metaverse as an alternative. This is due to the possibility that not all departments within an organization are befitting of carrying out their work within a virtual space. This shared understanding can also prevent the presence of misleading information or jealousy.

b. Build shared identity

This social identity in a virtual environment is important. Identity is a tool to understand individual actions, thoughts, and even individual feelings when joining a community. This virtual identity engagement will be beneficial for an organization because, firstly, when members of the organizations interact, they will share positive behavioral elements such as affection, motivation, and attributes that can increase performance, such as collective efficacy and a higher degree of team potential. Second, each member of the organization will compare their input and output within the organization. This is what is called social comparison. Each individual will participate in a competition to adjust their engagement in comparison with other members of the team. As such, it is clear that engagement built upon a shared identity in the virtual community will increase organizational performance.

c. Build Value Co-creation

The third element that an organization requires to go fully virtual or hybrid is ensuring that each individual holds the same values. This value is not the sum of each individual's values, but rather a co-creation of values between leaders and members of the organization. In our previous research, we argued that value creation is the desired goal of the organization, to help it understand the needs of its members. If value can be created, then this effort will support rapid learning because experience among members is an efficient way to create value.

6 Modification of Organizational Practices and Policies

With regard to converting to hybrid work, we conclude that an organization needs to modify some organizational practices and policies. These practices and policies correspond to how an organization manages its human capital.

6.1 Gamified Based HRM Practices

Aligning with the increase in discussions on the metaverse as an alternative style of work office, the management of employees based on technology through the gamification approach will be appropriately fitting to implement in an organization. The gamification approach is an approach to human resources management based on games supported by the use of technology that exude relaxedness for employees and also increase their competence to innovate and capability to reach organizational goals. We recommend that efforts to develop gamification concepts, including *gamified training*, *gamified compensation*, and *gamified performance appraisal*, will help increase employee *engagement*. Furthermore [10] also mentions that gamification positively impacts work engagement for employees who collaborate from separate workplaces.

6.2 Establishing Fundamental Religious Work Values

In relation to the new understanding of the office as a medium to socialize and gather, we then propose that spiritual work value will need to be built by the leaders. Spirituality is one of the most influential factors that is significantly related to employee attitudes, values, and behavior. It specifically describes the effect on the problems that exist in an organization, including the approach and decisions of managers and employees. Based on the above understanding, it can be concluded that spiritual work values are the application of divine values or concepts as an order in the organization so that they have good moral and ethical principles and can distinguish between good and right [11-13].

The outcome of spiritual work values has a positive effect on the meaning of work [12]. Employees who incorporate spiritual values have their own experiences at work. Spiritual work values are an essential factor in activities in the world of work to remind employees to always behave based on spiritual values. This is reinforced by previous research by [14]. In conclusion, the more employees who have high spiritual values at work, the more meaningful work will be, fostering a sense of meaning.

6.3 Prepare Individual Readiness to Change

If today we face a change in work characteristics towards virtual or even using the metaverse, then it is only a matter of time before there are many changes that will impact on business models, offices, and procedures for carrying out work in the future. The success of an organization in finishing the job more or less depends on individual readiness to change. Individual readiness for change is defined as the extent to which individuals are prepared to participate in different organizational activities [15].

As such, in order to prepare for the metaverse as an alternative to hybrid work, a collection of HRM practices and organizational situations must be arranged to drive individuals to possess a high level of readiness, in various situations and conditions that will trigger the change. A summary of our research findings can be described and illustrated in Fig. 1.

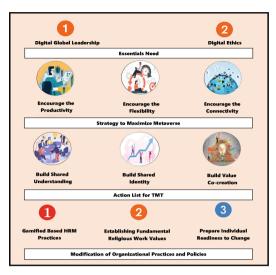


Fig. 1. Essential things for using the metaverse as a future workplace.

7 Conclusion

Our review offers insights into the essential needs for establishing the metaverse as a virtual workplace and provides some key strategies and conditions to be met. However, given the volatility of world work, we cannot guarantee that the pre-requisite conditions offered will remain the same for the next 5–10 years. The advance of virtual reality development may replace the leadership trait and style, the robot and machine may replace our whole work, ethical standards might be changed as well. However, we strongly recommend that spiritual values, especially those rooted in religious values, will take their place as basic fundamental values to catalyse any changes that occur within organization. Therefore, further research is needed to include how to select talent and prepare future leaders that are agile, adaptive, and empathetic to human needs in virtual environments.

References

- Choi, H.Y.: Working in the Metaverse: Does Telework in a Metaverse Office Have the Potential to Reduce Population Pressure in Megacities? Evidence from Young Adults in Seoul, South Korea. Sustainability (Switzerland) 14(6), (2022). Available at: https://doi.org/10.3390/su1 4063629
- Hutson, J.: Social virtual reality: neurodivergence and inclusivity in the metaverse. Societies. mdpi.com 12(102) (2022). Available at: https://www.mdpi.com/1714956
- Carter, D.: Immersive Employee Experiences in the Metaverse: Virtual Work Environments, Augmented Analytics Tools, and Sensory and Tracking Technologies. Psychosociological Issues in Human Resource search.proquest.com (2022). Available at: https://search.proquest.com/openview/6fa26c8553f4bb6e9be9fef3b75ff6b2/1?pq-origsite=gscholar&cbl=2045093

- 4. Upadhyay, A.K., Khandelwal, K.: Metaverse: the future of immersive training. Strategic HR Review. emerald.com (2022). Available at: https://doi.org/10.1108/SHR-02-2022-0009
- Durana, P., Krulicky, T., Taylor, E.: Working in the Metaverse: Virtual Recruitment, Cognitive Analytics Management, and Immersive Visualization Systems. Psychosociology. Issues Hum search.proquest.com (2022). Available at: https://search.proquest.com/openview/945bf80bb 6ca98077b588d5e73729b86/1?pq-origsite=gscholar&cbl=2045093
- Batat, W., Hammedi, W.: The extended reality technology (ERT) framework for designing customer and service experiences in phygital settings: a service research agenda. Journal of Service Management. emerald.com (2022). Available at: https://doi.org/10.1108/JOSM-08-2022-0289
- Browne, J., Green, L.: The Future of Work is No Work: A Call to Action for Designers in the Abolition of Work. In: CHI Conference on Human Factors in Computing Systems, April 2022. dl.acm.org, pp. 1–8 (2022). Available at: https://doi.org/10.1145/3491101.3516385
- Hirsch, P.B.: Adventures in the metaverse. Journal of Business Strategy. Emerald Publishing Limited 43(5), 332–336 (January 2022). Available at: https://doi.org/10.1108/JBS-06-2022-0101
- Lemke, C., Monett, D., Mikoleit, M.: Digital ethics in data-driven organizations and AI ethics as application example. In: Barton, T., Müller, C. (eds.) Apply Data Science, pp. 31–48. Springer Fachmedien Wiesbaden, Wiesbaden (2023). Available at: https://doi.org/10.1007/ 978-3-658-38798-3_3
- Wicaksono, K., Fachrunnisa, O.: Human resource based gamification and organizational support to increase employee engagement: a conceptual model. In: The 3rd National and International Conference 2022 'Proactive Management of Cooperative and Social Enterprises Reacting to the Challenges of New Social Dynamic', July 21–22, 2022, pp. 106–585 (2022)
- Adhiatma, A., Fachrunnisa, O.: The Relationship among Zakat Maal, Altruism and Work Life Quality. International Journal of Zakat 6(1), 71–94 (2021). Available at: https://doi.org/10. 37706/ijaz.v6i1.255
- 12. Adhiatma, A., Nafsian, R.A.: A Model to Improve Islamic Community Social Identity and SMEs Performance. In: Proceedinh of 7th ASEAN Universities International Conference on Islamic Finance (AICIF) 2019 'Revival Of Islamic Social Finance To Strengthen Economic Development Towards A Global Industrial Revolution'. UNIDA Gontor Press, Gontor (2019). Available at: https://www.ptonline.com/articles/how-to-get-better-mfi-results
- Sudarti, K., Fachrunnisa, O., Hendar, Adhiatma, A.: Religious value co-creation: a strategy to strengthen customer engagement. In: Barolli, L., Yim, K., Enokido, T. (eds.) CISIS 2021. LNNS, vol. 278, pp. 417–425. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79725-6_41
- Milliman, J., Czaplewski, A.J., Ferguson, J.: Workplace spirituality and employee work attitudes: An exploratory empirical assessment. Journal of Organizational Change Management 16(4), 426–447 (2003). Available at: https://doi.org/10.1108/09534810310484172
- Huy, Q.: Intelligence, and Radical Change. The Academy of Management Review 24(January 1999), 325–345 (1999). Available at: https://doi.org/10.2307/259085